Ознакомьтесь с нашей политикой обработки персональных данных

EDUCATION EXPANDS KNOWLEDGE

МЫ НЕ РЕШАЕМ ЗА ВАС - МЫ ПОМОГАЕМ РЕШАТЬ!


| ЦЕЛИ СООБЩЕСТВА | АДМИНИСТРАЦИЯ СООБЩЕСТВА | МОДЕРАТОРЫ СООБЩЕСТВА |
Основала сообщество и бессменно руководила им с 2006 по 2012 г. рано ушедшая из жизни Robot, вложившая в него свои силы, знания, опыт, доброту и стремление к бескорыстной помощи.
ПРАВИЛА СООБЩЕСТВА
|НЕКОТОРЫЕ СОВЕТЫ ПО ОФОРМЛЕНИЮ|КАК ПРАВИЛЬНО ЗАПОЛНИТЬ @ТЕМУ|


Если вы хотите научиться плавать, то смело входите в воду,
а если хотите научиться решать задачи — решайте их (Д. Пойа).

Научился сам - не мешай научиться другому.
URL
  • ↓
  • ↑
  • ⇑
 
21:15 

Уравнение

wpoms.
Step by step ...


Найдите все пары `(a, b)` неотрицательных целых числе таких, что `2017^a = b^6 - 32b + 1`.



@темы: Показательные уравнения (неравенства)

18:00 

Игра

wpoms.
Step by step ...


Анна и Берта играют в игру, в которой нужно снимать камешки со стола.
Анна ходит первой. Пусть перед очередным ходом на столе лежат `n \geq 1` камешков, тогда делающий ход игрок снимает со стола `k` камешков, где `k \geq 1` либо четное и `k \leq \frac{n}{2}`, либо нечетное и `\frac{n}{2} \leq k \leq n`. Игрок выигрывает, если своим ходом она снимает со стола последний камень.
Найдите наименьшее `N \geq 100000` такое, что Берта может одержать победу, если на столе лежат ровно `N` камешков в начале игры.



@темы: Дискретная математика

13:12 

Холщовый мешок
Учительская Газета : Сайт РГПУ им. А.И.Герцена опубликовал демоверсии диагностических работ для учителей

На сайте Российского государственного педагогического университета им. А.И.Герцена в открытом доступе выложены демоверсии диагностических работ для учителей математики и учителей русского языка, а также демоверсия профессиональной задачи. Напомним, ранее министр образования и науки Ольга Васильева сообщила журналистам, что осенью для учителей 15 регионов проведут тест, цель которого выявить уровень знаний педагогов по русскому языку и математике.

В августе стал известен список регионов, учителя которых напишут предметные тесты по русскому языку и математике. Так, готовность участия в апробации модели уровневой оценки компетенций учителей в 2017 году подтвердили Хабаровский край, республики Адыгея, Ингушетия, Кабардино-Балкария, Татарстан, Чечня, а также Московская, Волгоградская, Рязанская, Ленинградская, Курганская, Томская и Ярославская области.

Глава Рособрнадзора Сергей Кравцов, комментируя идею проверки педагогов, заявлял о том, что более 10% учителей, окончивших педвуз, испытывают проблемы с русским языком и математикой.

"Новая газета" в публикации о современной школе, замечает, что "учителя 15 регионов России выразили согласие на проведение контрольных работ для учителей, начиная с 1 сентября 2017 года. Слово "согласие" здесь ключевое. Потому что никаких законных оснований для такого мероприятия нет. По закону знания учителя контролируются вузовскими комиссиями, выдающими дипломы, экспертными комиссиями, проводящими переаттестацию не реже, чем раз в пять лет, преподавателями курсов повышения квалификации не реже, чем раз в три года. О контрольных в законе ничего не сказано. То есть это сугубо добровольная индивидуальная форма контроля. Однако кто же взял на себя миссию от имени учителей 15 регионов выражать согласие на ее массовое проведение? Как это согласие было получено? На этот вопрос слышно только молчание. Почему можно взрослого человека выдернуть из трудового процесса, затратить его время (рабочее или личное, уже не важно, ибо одинаково плохо), добавить ему стресса и, разумеется, никак не компенсировать? Это риторический вопрос, ибо таковы будни системы образования".

По словам министра образования и науки России Ольги Васильевой, образование можно развить только эволюционным путем. "На сегодняшний день никаких резких поворотов никто не собирается делать, это не приемлет система. Очень важно, что в нашей системе сложилась ответная реакция министерства на те запросы и вызовы, которые к нам идут со стороны родительского сообщества, педагогического нашего уважаемого сообщества, наших учеников", - считает глава ведомства.



Материалы для учителя. Демонстрационные варианты диагностической работы: teacherslevel.herzen.spb.ru/?page_id=702

Upd.
Открытое письмо, связанное с оценкой компетенций учителей, к министру образования и науки РФ О.Ю. Васильевой, руководителю Рособрнадзора С.С. Кравцову и др. www.edustandart.ru/otkrytoe-pismo-o-modeli-otse...

@темы: Образование, Порешаем?!

05:18 

Украина. 2017. Финал

Холщовый мешок
Украина. 2017. Финал

Чудовище высадилось. (c)


читать дальше

@темы: Олимпиадные задачи

18:06 

В пятиугольнике

wpoms.
Step by step ...


Дан правильный пятиугольник `ABCDE` с центром `M`. Точка `P \neq M` лежит на отрезке `MD`. Окружность, описанная около `ABP`, пересекает отрезок `AE` в точках `A` и `Q`, а так же пересекает прямую, проходящую через `P` перпендикулярно `CD`, в точках `P` и `R`. Докажите, что длины отрезков `AR` и `QR` равны.



@темы: Планиметрия

07:37 

wpoms
Step by step ...
С Днём рождения, aalleexx, и всего наилучшего!!!





P.S. На форуме alexlarin.com начался 5 6 сезон популярного вариала.

Вариант 201.

1. Шоколадка стоит 40 рублей. В воскресенье в супермаркете действует
специальное предложение: заплатив за две шоколадки, покупатель получает три
(одну – в подарок). Какое наибольшее количество шоколадок можно получить,
потратив не более 320 рублей в воскресенье?

читать дальше

Вариант в виде pdf: alexlarin.net/ege/2018/trvar201.html

@темы: Праздники, Порешаем?!, ЕГЭ

17:25 

All_ex
Эллипс - это круг, который можно вписать в квадрат 25х40
Дорогие сообщники, коллеги и примкнувшие к ним!
Поздравляю всех с Днём Знаний!
Желаю бесконечного здоровья, безмерного счастья и прочих прелестей в неограниченном количестве








.....

@темы: Праздники

20:13 

wpoms.
Step by step ...


5519.
Даны три различных натуральных числа. Разрешается к любому из них прибавить наибольший общий делитель двух других. Можно ли за несколько таких операций сделать все числа равными?
%Ю.А. Игнатов (Тула)

читать дальше




ПС Приглашаю желающих принять участие в переводе условий американских олимпиад.

@темы: Порешаем?!

12:45 

wpoms.
Step by step ...
Бураго А. Г. Дневник математического кружка: первый год занятий / Перевод с английского А. В. Абакумова. –– М.: МЦНМО, 2017. –– 368 с.

Книга содержит весь необходимый материал для проведения математического кружка в 5––7 классах в течение всего учебного года.
Приводятся подробно изложенные темы для обсуждения в классе, наборы задач с решениями, математические игры и конкурсы. Автор –– преподаватель математических кружков с многолетним стажем –– делится профессиональными навыками ведения кружка. Читатель найдёт в книге советы, как организовать занятие, преподнести материал и избежать типичных ошибок.
Книга адресована учителям и руководителям математических кружков. Также она будет интересна школьникам, увлекающимся математикой, и их родителям.

biblio.mccme.ru/node/5764 (265 руб.)

О новой книге

@темы: Литература

12:33 

wpoms.
Step by step ...
Игнатов Ю.А., Шулюпов В.А., Реброва И.Ю., Устян А.Е., Эвнин А.Ю. Всероссийские студенческие турниры математических боев. Тула, 2002-2015 гг. Часть 1 — Тула: ТГПУ, 2017. — 146 с.
Сборник задач проводившихся в Туле в 2002-2015 студенческих математических боёв. Включает также правила проведения, регламент турниров, сводку результатов.
Предназначен в помощь студентам и преподавателям для подготовки к математическим соревнованиям.

Игнатов Ю.А., Шулюпов В.А., Реброва И.Ю., Устян А.Е., Эвнин А.Ю. Всероссийские студенческие турниры математических боев. Тула, 2002-2015 гг.. Ч.2 — Тула: ТГПУ, 2017. — 148 с.
Сборник задач проводившихся в Туле в 2002-2015 студенческих математических боёв. Включает также правила проведения, регламент турниров, сводку результатов.
Предназначен в помощь студентам и преподавателям для подготовки к математическим соревнованиям.

Полистать можно на www.twirpx.com или либгене.

@темы: Литература

20:54 

Демоверсии 2018

ФИПИ опубликовал:

Демоверсии, спецификации, кодификаторы ЕГЭ 2018 г.
www.fipi.ru/ege-i-gve-11/demoversii-specifikaci...

Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2017 года
www.fipi.ru/ege-i-gve-11/analiticheskie-i-metod...

Демоверсии, спецификации, кодификаторы ОГЭ 2018 год
www.fipi.ru/oge-i-gve-9/demoversii-specifikacii...

@темы: ГИА (9 класс), ЕГЭ

19:06 

И снова многочлены

wpoms.
Step by step ...


Найдите все многочлены $P(x) \in \R[x]$, удовлетворяющие двум условиям:
(a) $P(2017) = 2016$ и
(b) $(P(x) + 1)^2 = P(x^2 + 1)$ для всех действительных $x.$



@темы: Теория многочленов

06:02 

Что-то про многочлены

wpoms.
Step by step ...


Пусть `u` является положительным корнем уравнения `x^2 + x - 4 = 0`. Многочлен
`P(x) = a_n*x^n + a_{n-1}*x^{n-1} + \ldots + a_0,`

где `n` - положительное целое число, имеет неотрицательные целые коэффициенты и `P(u) = 2017`.
1) Докажите, что `a_0 + a_1 + \ldots + a_n \equiv 1 text{mod} 2 `.
2) Найдите максимально возможное значение выражения `a_0+a_1+\ldots+a_n`.



@темы: Теория многочленов

22:36 

Целочисленные тройки

wpoms.
Step by step ...


Найдите все целочисленные тройки `(a,b,c)` такие, что `a > 0 > b > c` и их сумма равна 0 при условии, что
`N=2017-a^3b-b^3c-c^3a`

является квадратом целого числа.



@темы: Теория чисел

11:03 

Аксиоматическая теория множеств Цермело-Френкеля

Доброго времени суток!

Я пытаюсь изучать аксиоматическую теорию множеств. Решил начать с ZF как наиболее популярной. Вопросов значительно больше, чем ответов. Да и вопросы сформулировать, увы, здесь не всегда просто. Просто сплошная непонятность! Попытаюсь наиболее ясно сформулировать непонятные мне моменты.

I) В любой аксиоматической теории вводятся неопределяемые объекты и отношения между ними. Например, в евклидовой геометрии такими неопределяемыми объектами являются "точка", "прямая", "плоскость", "движение", а неопределяемыми отношениями - бинарное отношение "инцидентность" и тернарное отношение "лежит между" (согласно немного видоизмененной аксиоматике Гильберта, приведенной в книге Костина "Основания геометрии" () . В теории Пеано натуральных чисел неопределяемым объектом является "натуральное число", а неопределяемым отношением - бинарное отношение "следовать за". В связи с этим возникает вопрос. Какие неопределяемые понятия и отношения используются в аксиоматике ZF? С моей точки зрения, неопределяемыми понятиями должны быть "множества", "элементы", неопределяемыми отношениями - бинарное отношение "принадлежит" (∈ (), "равно" (=). Но если я прав (хотя, не похоже), почему тогда во всех аксиомах ZF используются только малые латинские буквы? Иначе говоря, почему на уровне букв не делается различия между "множествами" и "элементами"? В книге Н. И. Казимирова "Введение в аксиоматическую теорию множеств" на стр. 4 в первом абзаце утверждается: " В теории множеств (как в наивной, так и в формальной) мы любой объект считаем множеством, т. к., во-первых, это ничуть не мешает нам моделировать при помощи теории множеств реальные объекты, а во-вторых, это упрощает построение самой теории". Т. е. нет понятия "элемент" в аксиоматике ZF? Выходит, что элементами любого множества в ZF являются элементы, сами являющиеся множествами. Но тогда получается, например, следующее. Возьмем, к примеру, множество A, состоящее из числа 1: A={1}. Верным будет утверждение 1 ∈ A. Но 1 - само множество! Что ему тогда принадлежит? 1? Т. е. 1 ∈ 1? Так что ли поступают в аксиоматической теории множеств? (Напомню, что во многих учебниках по наивной теории множеств запись 1 ∈ 1 признается не имеющей смысла; верно лишь, что 1 {1}). Я заранее прошу прощения за большую выдержку из упомянутой книги Казимирова, но вот что он сам пишет по поводу такого странного положения дел:

"С самого начала мы предположили, что все множества, какие мы рассматриваем в наивной (канторовской) теории множеств представляют из себя произвольные наборы множеств, никаких других ограничений на понятие множества мы не накладывали. Покажем, что такое достаточно произвольное определение множества не может быть корректным с точки зрения логики, ибо приводит к противоречию. Следующий парадокс, который мы получим здесь, называется парадоксом Расселла.
Поскольку атомарная формула х у, выражающая принадлежность множества х к множеству у, имеет смысл для любых множеств х и у, ничто не мешает нам рассмотреть такой ее вид: х х. С точки зрения здравого смысла формула х х должна быть ложной для любого множества х, ибо мы считаем, что часть некоего объекта (в данном случае множества) не может совпадать с самим этим объектом. Поэтому мы вводим следующее определение: множество х такое, что х x, называется регулярным, а множество х, для которого хх, назовем сингулярным.
Снова нам ничто не мешает собрать все регулярные множества в одно множество R, точнее, R={x|x x}. Попытаемся теперь ответить на следующий вопрос: регулярно или сингулярно множество R?
Предположим, что множество R регулярно, т.е. R R. Но тогда R удовлетворяет тому свойству, которым оно само определено, значит, R R. Противоречие. Предположим тогда, что R сингулярно, т. е. R R. Но тогда R не удовлетворяет тому свойству, которым определены его элементы, следовательно, R R. Противоречие.
Итак, множество R не регулярно и не сингулярно, чего быть не может, если мы принимаем закон исключенного третьего (либо А, либо не А). Так может быть, R — не множество?
Полученный парадокс, как может показаться, доказывает несостоятельность самой идеи множества, как высшей точки абстракции в математических науках. На самом же деле весь тот путь, который мы прошли при построении множеств и при рассмотрении парадокса Расселла, уже дает предпосылки к решению этого парадокса. Мы с самого начала считали, что множество есть произвольная совокупность (множеств), что привело к построению парадоксального множества R. Насколько велико это множество, мы также не знаем, ибо мы предположили существование сингулярных множеств. С другой стороны, если предположить, что все множества регулярны, то R будет просто множеством всех множеств. Конечно, это не избавляет нас от противоречия, но зато дает повод попытаться исключить из рассмотрения сингулярные множества, а также «слишком
большие» совокупности множеств путем навязывания множествам некоторых условий или, как принято говорить, аксиом".

Но в нашем случае речь идет не о "больших множествах", а всего лишь о множестве, состоящем из одного элемента. И, по определению Казимирова, оно сингулярно! Итак, есть ли в теории ZF различие между "множествами" и "элементами"? Что-то уже много написал... Если кто-то поможет ответить, буду искренне признателен. Остальные вопросы в ходе дискуссии. Спасибо!




@темы: Математическая логика

12:01 

Много треугольников

wpoms.
Step by step ...


Через точку `A` на плоскости проходят 3 прямые, которые разбивают плоскость на 6 областей.
Внутри каждой области выбраны 5 точек. Известно, что никакие три из выбранных 30 точек не лежат на одной прямой. Докажите, что существует не менее 1000 треугольников с вершинами в выбранных точках таких, что точка `A` находится внутри или на границе треугольников.



@темы: Планиметрия

20:18 

Пятизначные числа

Уважаемое сообщество , не могу найти решение задачи - доказательство:
Существует ли такое пятизначное число, которое при возведении в произвольную натуральную степень будет оканчиваться на те же пять цифр, что и исходное число, притом в том же порядке?
Ответы нашел - например 90625, 890625. Но не могу этого доказать

@темы: Головоломки и занимательные задачи

09:43 

Переходим к старшим

wpoms.
Step by step ...


Остроугольный треугольник `ABC` с `AB < AC < BC` вписан в окружность `c(O,R)`. Окружность `c_1(A,AC)` пересекает окружность `c` в точке `D` и пересекает продолжение стороны `CB` в `E`. Прямая `AE` пересекает `c` в `F` и точка `G` симметрична `E` относительно точки `B`. Докажите, что около четырёхугольника `FEDG` можно описать окружность.



@темы: Планиметрия

20:58 

Игра по правилам

wpoms.
Step by step ...


Компания из `n` игроков играет в настольную игру по следующим правилам.
а) В каждом раунде играют ровно `3` игрока
б) Игра заканчивается через `n` раундов
в) Каждая пара игроков играет вместе по крайней мере в одном раунде.
Найдите наибольшее возможное значение `n`.



@темы: Комбинаторика

21:58 

Что-то гармоническое

wpoms.
Step by step ...


Найдите все такие положительные целые числа`a`, `b` и простые числа `p` такие, что
`\frac{1}{p} = \frac{1}{a^2} + \frac{1}{b^2}`.



@темы: Теория чисел

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная